

WBS 3.1.2 - Calorimeter Trigger

Sridhara Dasu

Level-3 Project Manager
CMS Calorimeter Trigger Project
University of Wisconsin

DOE/NSF Review May 9, 2000

Calorimeter Trigger Overview

Calorimeter Trigger Geometry

Cal. Trigger Tower Mapping

Regional Calorimeter Crate

(WBS 3.1.2)

Data from calorimeter FE on Cu links @ 1.2 Gbaud (ptyp. tstd.)

- Into 133 rear-mounted Receiver Cards (ptyp. tstd. w/ ASICs)
- 160 MHz point to point backplane (ptyp. tstd.)
 - 19 Clock&Control (ptyp. tstd.), 133 Electron ID (ptyp. tstd.)
 - 19 Jet/Summary, Receiver Cards operate @ 160 MHz

Receiver Card

Input Cable Connectors

Rear: 32 Channels =

4 Ch. x 8 mezzanine cards 1.2 GBaud copper rcvrs 18 bit (2x9) data + 5 bit error

Vitesse Chip:

Converts Serial to Parallel Data to front at 120 MHz TTL

Phase ASIC: Deskew, Mux @ 160MHz

Error bit for each 4x4, Test Vectors

Memory LUT @ 160 MHz

Linearization and $e/\gamma \& \tau$ veto bits

Adder ASIC:

8 inputs @ 160 MHz in 25 ns. Differential Output@160 MHz

Electron ID & Jet/Summary Cards

Processes 4x8 region @ 160 MHz Electron isolation on ASIC Lookup tables for ranking Takes Max in each 4x4 **Summarizes full crate:**

Sorts 14 iso. e's \rightarrow top 4 iso e's Sorts 14 non. iso e's \rightarrow top 4 non iso e's Stages 4x4 E_{T} sums to cluster crate Iso, non iso e's and Quiet/MinI bits to GCT

Jet/τ Cluster and HF Crates

Jet/τ Clustering

- New algorithms to seamlessly cover all η-φ
 - New CMS physics requirement
- HF Crate
 - Uses portion of Receiver and Jet/Summary card functions
 - Vitesse serial links
 - Look Up Tables for linearization
 - Drive parallel differential signals to external crate
 - May be able to integrate in Jet/Summary card
- Cluster Crate with proven RCT technology
 - Parallel differential signal input for all η-φ
 - Custom backplane for data sharing
 - Reuse ADDER, BSCAN & SORT ASICs for processing
 - All ECL logic with 160 MHz processing

8 x 13-bit 160 MHz Adder ASIC

Vitesse 0.6µ H-GaAs Process: ECL I/O

- 13 bits per operand
 x 8 operands
- Thirteen bit output
- Latency:25 ns @ 160 MHz
- Full Boundary Scan
- ~11,000 cells
- 4 Watts
- Tested > 200 MHz
- Operated on RC
- In Production

Cal. Trigger Dataflow Test

Prototype Crate with

- 160 MHz Backplane
- Proto. Receiver Card (rear)
- Proto. Clock Card (front)
- Proto. Electron ID Card (front)

Full 160 MHz dataflow verified

REAR

FRONT

M. Jaworski

Prototype Receiver Card

160 MHz Prototype Receiver Card tests:

- VMEInterfacechecked
- Adder ASIC's checked
- Timing checked
- Intercrate sharing checked

J. Lackey

Electron ID Card Prototype

Card tested:

- VME Interface working
- Dataflow from Receiver Card through custom backplane works
- Timing checked
- Logic verified

J. Lackey

ASIC Development - I

Prototype Phase ASIC (Receiver Card)

J. Lackey

- Input: 120 MHz TTL data from Gbit Link Mezzanine Card
- Output: 160 MHz ECL data & error detection
- Status:
 - Full speed tests by Vitesse passed
 - Prototypes in hand for testing on our RC

Prototype Boundary Scan ASIC (Receiver Card)

- Boundary scan of Receiver Card Input
- Backplane drivers -- compact circuitry
- Status:
 - Full speed tests by Vitesse passed
 - Prototypes in hand for testing on our RC

Both ASICs placed on new Receiver Prototype

ASIC Development - II

Electron ID ASIC (Electron ID Card)

J. Lackey

- Implements Electron Isolation algorithm
 - Described in talk of P. Chumney
- Status
 - Full speed tests by Vitesse passed
 - Prototypes in hand for testing on EIC

Sort ASIC (EID & Jet/Summary Card)

- Integrated backplane receivers & sorting
 - Passes 4 highest rank of 32 inputs
 - Sorts input before passing unto card
- Status
 - Full speed tests by Vitesse passed
 - Prototypes in hand for testing on EIC

Will test with new Electron ID Card prototype

Calorimeter Trigger Links

Copper Cable Gbit Serial Data Tests

Serial Link Test Card includes VME, memories & comparison circuitry to fully test serial links @ 120 MHz TTL from Mezzanine Cards. (U. Wisconsin)

Transmitter (top view)

Receiver (bottom view

Transmitter (bottom view)

Mezzanine Transmit &
Receive Cards convert 4 x
1Gb/s links to 120 MHz TTL
w/ Vitesse 7214 & cable J. Lackey
equalization P. Robl
D. Wahl

GBit Data Transmission

Tests over 20 m copper cable

Vitesse 72144 x GigabitInterconnect chip

twisted pair cables (Belden 9182 (150 ohm, 22AWG, foamed dielectric,twin-ax) grouped by fours & terminated with 8-pin DIN style connectors \$318 per 500 foot spool (\$2.10 per meter).

Trigger Link Bit Error Detection

Bits with Number of Percent of

Link error code simulation:

INK error code simulation: error	rs	Patterns	Errors not found
 Between ECAL & HCAL Upper Level 	0	4	0.00
• •	0	1	0.00
Readout & Cal. Regional Trigger	1 2	24 276	0.00 0.00
 2x(8 bits E_⊤ + 1 bit finegrain) 	3	2024	3.45
	4	10626	3.49
+ 5 bits error detection code*	5	42504	3.03
	6	134596	0.08
+ 1 bit "Gap Flag" = 24 bits/25 ns	7	346104	_
• Full E bit Hamming Codo* finds all	8	735471	0.06
 Full 5-bit Hamming Code* finds all 	9	1307504	0.14
1 & 2-bit errors (most common)	10	1961256	0.01
1 & 2-bit errors (most common)	11	2496144	0.01
Also finds more than 96% of any	12	2704156	0.02
Also finds more than 30 /0 or any	13 14	2496144	0.01
other error type	15	1961256 1307504	0.10 0.15
· .	16	735471	0.15
 Procedure upon error is to zero and 	17	346104	0.30
	18	134596	
log the error for readout by DAQ	19	42504	3.24
• Full implementation in Phase ACIC	20	10626	3.23
 Full implementation in Phase ASIC 	21	2024	2.77
• Now integrated in Pagaiver and	22	276	0.03
 Now integrated in Receiver card 	23	24	0.00
	24	1	0.00

Second Generation Prototypes

Ready for tests

Crate & Backplane

Ready for manufacture

Clock & Control

Serial Link mezzanine cards

Plans for This Year

Crate & Backplane

- Ready for summer tests
- Assemble production versions after validation in summer Serial Links
 - Finish new Serial Test Card (STC) for integration with E,HCAL
 - New Mezz. card (w V7216) detailed validation on STC

ASIC Procurement

- Complete order from Vitesse after summer tests
 Clock & Control, Receiver (RC) and Electron Isolation Cards (EIC)
 - Finish design and manufacture 2nd generation prototypes
 - Validate Serial Links, Phase & Boundary Scan ASICs on RC
 - Validate Sort & Electron ID ASICs on EIC

Jet/Summary Card

- Design first prototype including output to cluster crate
 Cluster and HF crates
 - Finalize designs

Cal Trigger Personnel

Physicists (at Wisconsin):

- Faculty: W. Smith & S. Dasu
- Ph.D. Physicists: P. Chumney & F. Di Lodovico

Engineers (experienced team at Wisconsin):

- J. Lackey -- Lead Engineer & Designer
 - Also Lead Engineer for Zeus Calorimeter Trigger
- M. Jaworski -- Board Layout & Design support
 - Worked on Zeus Calorimeter Trigger
- R. Fobes -- Procurement and Assembly
 - Worked on Zeus Calorimeter Trigger
- P. Robl -- Copper Links & Design support
 - PSL Engineer, assisted by lead PSL electronics engineer, D. Wahl, who worked on Zeus Trigger

Cal Trigger Production and Testing

Electronics testing and remediation of manufacturing defects

- J. Lackey Lead Engineer
- M. Jaworski, R. Fobes Engineering Support
- P. Chumney In charge of testing

Software development (for tests and operation)

- Need professional team with real-time programming skills
 - Good post-doctoral project
 - CS or EE or suitably qualified physics graduate students

Personnel is a concern

- Will need more people for production testing and software support
 - P. Chumney works on hardware at 50% level
 - Will supervise testing and develop software
 - Work with S. Dasu who has teaching responsibility now
 - Will need a crew for testing
 - ZEUS used 2 post-docs, 4 students for 2 years
- Base program support for post-doc and students necessary

Conclusions

Status

- Ready to test 2nd generation prototypes in summer
 - Crate and Backplane ready
 - ASICs ready, other parts procured
 - Clock & Control and Receiver Cards in final design
 - Electron Isolation Card in design
 - Serial Link Mezzanine Cards ready
 - Serial Link Test Card in final design

Goals for this year

- Complete of prototype tests, validate & order ASICs
- Integrate Serial Links with ECAL, HCAL front-end
- Finalize Jet/Summary card design